Введите задачу...
Линейная алгебра Примеры
Этап 1
Этап 1.1
Проверим линейность правила функции.
Этап 1.1.1
Чтобы убедиться в соответствии таблицы правилу функции, проверим, удовлетворяют ли значения линейной форме .
Этап 1.1.2
На основе этой таблицы создадим набор уравнений, для которого .
Этап 1.1.3
Вычислим значения и .
Этап 1.1.3.1
Перепишем уравнение в виде .
Этап 1.1.3.2
Заменим все вхождения на во всех уравнениях.
Этап 1.1.3.2.1
Заменим все вхождения в на .
Этап 1.1.3.2.2
Упростим .
Этап 1.1.3.2.2.1
Упростим левую часть.
Этап 1.1.3.2.2.1.1
Избавимся от скобок.
Этап 1.1.3.2.2.2
Упростим правую часть.
Этап 1.1.3.2.2.2.1
Упростим .
Этап 1.1.3.2.2.2.1.1
Добавим и .
Этап 1.1.3.2.2.2.1.2
Перенесем влево от .
Этап 1.1.3.2.3
Заменим все вхождения в на .
Этап 1.1.3.2.4
Упростим .
Этап 1.1.3.2.4.1
Упростим левую часть.
Этап 1.1.3.2.4.1.1
Избавимся от скобок.
Этап 1.1.3.2.4.2
Упростим правую часть.
Этап 1.1.3.2.4.2.1
Упростим .
Этап 1.1.3.2.4.2.1.1
Добавим и .
Этап 1.1.3.2.4.2.1.2
Перенесем влево от .
Этап 1.1.3.2.5
Заменим все вхождения в на .
Этап 1.1.3.2.6
Упростим .
Этап 1.1.3.2.6.1
Упростим левую часть.
Этап 1.1.3.2.6.1.1
Избавимся от скобок.
Этап 1.1.3.2.6.2
Упростим правую часть.
Этап 1.1.3.2.6.2.1
Упростим .
Этап 1.1.3.2.6.2.1.1
Добавим и .
Этап 1.1.3.2.6.2.1.2
Перенесем влево от .
Этап 1.1.3.2.7
Заменим все вхождения в на .
Этап 1.1.3.2.8
Упростим .
Этап 1.1.3.2.8.1
Упростим левую часть.
Этап 1.1.3.2.8.1.1
Избавимся от скобок.
Этап 1.1.3.2.8.2
Упростим правую часть.
Этап 1.1.3.2.8.2.1
Упростим .
Этап 1.1.3.2.8.2.1.1
Добавим и .
Этап 1.1.3.2.8.2.1.2
Перенесем влево от .
Этап 1.1.3.2.9
Заменим все вхождения в на .
Этап 1.1.3.2.10
Упростим .
Этап 1.1.3.2.10.1
Упростим левую часть.
Этап 1.1.3.2.10.1.1
Избавимся от скобок.
Этап 1.1.3.2.10.2
Упростим правую часть.
Этап 1.1.3.2.10.2.1
Упростим .
Этап 1.1.3.2.10.2.1.1
Добавим и .
Этап 1.1.3.2.10.2.1.2
Перенесем влево от .
Этап 1.1.3.2.10.2.1.3
Перепишем в виде .
Этап 1.1.3.3
Решим относительно в .
Этап 1.1.3.3.1
Перепишем уравнение в виде .
Этап 1.1.3.3.2
Разделим каждый член на и упростим.
Этап 1.1.3.3.2.1
Разделим каждый член на .
Этап 1.1.3.3.2.2
Упростим левую часть.
Этап 1.1.3.3.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 1.1.3.3.2.2.2
Разделим на .
Этап 1.1.3.3.2.3
Упростим правую часть.
Этап 1.1.3.3.2.3.1
Разделим на .
Этап 1.1.3.4
Заменим все вхождения на во всех уравнениях.
Этап 1.1.3.4.1
Заменим все вхождения в на .
Этап 1.1.3.4.2
Упростим правую часть.
Этап 1.1.3.4.2.1
Умножим на .
Этап 1.1.3.4.3
Заменим все вхождения в на .
Этап 1.1.3.4.4
Упростим правую часть.
Этап 1.1.3.4.4.1
Умножим на .
Этап 1.1.3.4.5
Заменим все вхождения в на .
Этап 1.1.3.4.6
Упростим правую часть.
Этап 1.1.3.4.6.1
Умножим на .
Этап 1.1.3.4.7
Заменим все вхождения в на .
Этап 1.1.3.4.8
Упростим правую часть.
Этап 1.1.3.4.8.1
Умножим на .
Этап 1.1.3.5
Удалим из системы все уравнения, которые всегда верны.
Этап 1.1.3.6
Перечислим все решения.
Этап 1.1.4
Вычислим значение , используя каждое значение в отношении и сравнивая это значение с заданным значением в отношении.
Этап 1.1.4.1
Вычислим значение , когда , и .
Этап 1.1.4.1.1
Умножим на .
Этап 1.1.4.1.2
Добавим и .
Этап 1.1.4.2
Если для данной таблицы действует линейное правило функции, для соответствующего значения , . Эта проверка дает положительный результат, так как и .
Этап 1.1.4.3
Вычислим значение , когда , и .
Этап 1.1.4.3.1
Умножим на .
Этап 1.1.4.3.2
Добавим и .
Этап 1.1.4.4
Если для данной таблицы действует линейное правило функции, для соответствующего значения , . Эта проверка дает положительный результат, так как и .
Этап 1.1.4.5
Вычислим значение , когда , и .
Этап 1.1.4.5.1
Умножим на .
Этап 1.1.4.5.2
Добавим и .
Этап 1.1.4.6
Если для данной таблицы действует линейное правило функции, для соответствующего значения , . Эта проверка дает положительный результат, так как и .
Этап 1.1.4.7
Вычислим значение , когда , и .
Этап 1.1.4.7.1
Умножим на .
Этап 1.1.4.7.2
Добавим и .
Этап 1.1.4.8
Если для данной таблицы действует линейное правило функции, для соответствующего значения , . Эта проверка дает положительный результат, так как и .
Этап 1.1.4.9
Вычислим значение , когда , и .
Этап 1.1.4.9.1
Умножим на .
Этап 1.1.4.9.2
Добавим и .
Этап 1.1.4.10
Если для данной таблицы действует линейное правило функции, для соответствующего значения , . Эта проверка дает положительный результат, так как и .
Этап 1.1.4.11
Вычислим значение , когда , и .
Этап 1.1.4.11.1
Умножим на .
Этап 1.1.4.11.2
Добавим и .
Этап 1.1.4.12
Если для данной таблицы действует линейное правило функции, для соответствующего значения , . Эта проверка дает положительный результат, так как и .
Этап 1.1.4.13
Поскольку для соответствующих значений , эта функция является линейной.
Функция является линейной.
Функция является линейной.
Функция является линейной.
Этап 1.2
Поскольку все , эта функция является линейной и имеет вид .
Этап 2
Перечислим все решения.
Этап 3
C этим предметом обсуждения больше ничего сделать нельзя. Проверьте введенное выражение или попробуйте выбрать другой предмет.